Free fall on a fixed center and harmonic oscillator.

Newton’s equation for the free fall (Unnecessary constants have been removed) :

sundman_1.gif

sundman_2.gif

sundman_3.gif

That equation is best integrated analytically by considering the energy first integral, (sundman_4.gif Here is the solution in implicit form t=time(x) :

sundman_5.gif

sundman_6.gif

sundman_7.gif

sundman_8.gif

sundman_9.gif

sundman_10.gif

A forward numerical integration suspects the presence of a singularity near t=1.11... :

sundman_11.gif

sundman_12.gif

sundman_13.gif

Changing both dependant and independant variables in Mathematica :

1) The change of Sundman (x=sundman_14.gif and dt=sundman_15.gif dT) :

sundman_16.gif

sundman_17.gif

sundman_18.gif

sundman_19.gif

Combining the two former equations leads to a harmonic oscillation of X as a function of T.

sundman_20.gif

sundman_21.gif

sundman_22.gif

sundman_23.gif

sundman_24.gif

2) No monomial point transformation, x=sundman_25.gifsundman_26.gif and t=sundman_27.gifsundman_28.gif (where a, b, c, d are constants whatever their numerical values) can achieve such a  reduction :

sundman_29.gif

sundman_30.gif

sundman_31.gif

sundman_32.gif

Spikey Created with Wolfram Mathematica 8.0