Simple binary Turing machines, their numbering, behaviour and output.

1. Wolfram’s numbering scheme of Turing machines with s states and k characters, half infinite tape and no explicit halting state.

Number of Turing machines with s states and k characters (binary machines are enligthed) :

CompressionMTS_1.gif

s→2 s→3 s→4 s→5
k→2 4096 2985984 4294967296 10240000000000
k→3 2985984 198359290368 36520347436056576 14348907000000000000000
k→4 4294967296 36520347436056576 1208925819614629174706176 109951162777600000000000000000000
k→5 10240000000000 14348907000000000000000 109951162777600000000000000000000 2980232238769531250000000000000000000000000

Instructions table of a machine whose rule number is given (instructions refers to Wolfram’s original mode but shiftedinstructions should have been more judicious) :

CompressionMTS_2.gif

CompressionMTS_3.gif

CompressionMTS_4.gif

CompressionMTS_5.gif

CompressionMTS_6.gif

CompressionMTS_7.gif

Rule number of a machine whose instructions table is given :

CompressionMTS_8.gif

CompressionMTS_9.gif

CompressionMTS_10.gif

Clearly TMNumber annihilates instructions :

CompressionMTS_11.gif

CompressionMTS_12.gif

The s×k triplets, (s,k,d), associated to a given rule, in Wolfram’s canonical order (s =1, 2, ...; k=0, 1, ...; d=-1,+1) :

CompressionMTS_13.gif

CompressionMTS_14.gif

CompressionMTS_15.gif

The same triplets in shifted mode (s =0, 1, ...; k=0, 1, ...; d=0,1) :

CompressionMTS_16.gif

CompressionMTS_17.gif

CompressionMTS_18.gif

Recovering the machine rule number from the shifted triplets :

CompressionMTS_19.gif

CompressionMTS_20.gif

CompressionMTS_21.gif

CompressionMTS_22.gif

Analysis of the 4096 2-states binary machines.

Activation of preliminary instructions :

CompressionMTS_23.gif

CompressionMTS_24.gif

CompressionMTS_25.gif

CompressionMTS_26.gif

CompressionMTS_27.gif

CompressionMTS_28.gif

CompressionMTS_29.gif

CompressionMTS_30.gif

Search for the first time a new sequence is printed :

CompressionMTS_31.gif

CompressionMTS_32.gif

CompressionMTS_33.gif

CompressionMTS_34.gif

CompressionMTS_35.gif

CompressionMTS_36.gif

CompressionMTS_37.gif

CompressionMTS_38.gif

CompressionMTS_39.gif

Summary when s=2 (Symmetric sequences have been set as equals) :

CompressionMTS_40.gif

CompressionMTS_41.gif

CompressionMTS_42.gif

CompressionMTS_43.gif

Graphics:{2, 2, 299}

CompressionMTS_45.gif

CompressionMTS_46.gif

Analysis of the 2985984 3-states binary machines.

Activation of preliminary instructions :

CompressionMTS_47.gif

CompressionMTS_48.gif

CompressionMTS_49.gif

CompressionMTS_50.gif

CompressionMTS_51.gif

CompressionMTS_52.gif

CompressionMTS_53.gif

CompressionMTS_54.gif

Search for new sequences :

CompressionMTS_55.gif

CompressionMTS_56.gif

CompressionMTS_57.gif

CompressionMTS_58.gif

CompressionMTS_59.gif

CompressionMTS_60.gif

CompressionMTS_61.gif

CompressionMTS_62.gif

CompressionMTS_63.gif

CompressionMTS_64.gif

CompressionMTS_65.gif

CompressionMTS_66.gif

Graphics:{3, 2, 1377015}

CompressionMTS_68.gif

Analysis of the 4294967296 4-states binary machines (Incomplete).

Activation of preliminary instructions :

CompressionMTS_69.gif

CompressionMTS_70.gif

CompressionMTS_71.gif

CompressionMTS_72.gif

CompressionMTS_73.gif

CompressionMTS_74.gif

CompressionMTS_75.gif

CompressionMTS_76.gif

Search for new sequences :

CompressionMTS_77.gif

CompressionMTS_78.gif

CompressionMTS_79.gif

CompressionMTS_80.gif

CompressionMTS_81.gif

CompressionMTS_82.gif

CompressionMTS_83.gif

CompressionMTS_84.gif

CompressionMTS_85.gif

CompressionMTS_86.gif

CompressionMTS_87.gif

CompressionMTS_88.gif

CompressionMTS_89.gif

Graphics:{4, 2, 105548927}

2. Modified numbering scheme of Turing machines with s states and k characters, half infinite tape and no explicit halting state.

Once s and k are known, their exist 2s k distinct triplets (numbered from 0 to 2s k - 1)  :

CompressionMTS_91.gif

CompressionMTS_92.gif

CompressionMTS_93.gif

CompressionMTS_94.gif

CompressionMTS_95.gif

CompressionMTS_96.gif

CompressionMTS_97.gif

CompressionMTS_98.gif

CompressionMTS_99.gif

CompressionMTS_100.gif

CompressionMTS_101.gif

CompressionMTS_102.gif

CompressionMTS_103.gif

CompressionMTS_104.gif

CompressionMTS_105.gif

CompressionMTS_106.gif

CompressionMTS_107.gif

CompressionMTS_108.gif

CompressionMTS_109.gif

CompressionMTS_110.gif

CompressionMTS_111.gif

CompressionMTS_112.gif

CompressionMTS_113.gif

CompressionMTS_114.gif

CompressionMTS_115.gif

CompressionMTS_116.gif

CompressionMTS_117.gif

Running a particular machine (new numbering !) :

CompressionMTS_118.gif

Graphics:{4, 2, 1483700}

CompressionMTS_120.gif

Graphics:{4, 2, 51088454}

CompressionMTS_122.gif

Even on a multi core PC Mathematica is unable to run 4294967296 machines in a reasonable time (a few days are needed).  A C++ program is much more rapid and GPU programming helps a lot : a few minutes suffice !

Treatment of the sequences output by 4-states binary TM (Parallelized in C++ : MT4_cuda.exe -> MT4.txt).

Reading the output file in Mathematica ({Machine number, number of steps, printed sequence}) :

CompressionMTS_123.gif

CompressionMTS_124.gif

CompressionMTS_125.gif

Busiest beaver :

CompressionMTS_126.gif

CompressionMTS_127.gif

CompressionMTS_128.gif

CompressionMTS_129.gif

Most productive beaver :

CompressionMTS_130.gif

CompressionMTS_131.gif

CompressionMTS_132.gif

CompressionMTS_133.gif

{Machine number, logical depth, printed sequence} :

CompressionMTS_134.gif

CompressionMTS_135.gif

Symmetrization and reordering of the results (sequence, reversed sequence, conjugate sequence and reversed conjugate sequence) :

CompressionMTS_136.gif

CompressionMTS_137.gif

CompressionMTS_138.gif

CompressionMTS_139.gif

CompressionMTS_140.gif

CompressionMTS_141.gif

CompressionMTS_142.gif

CompressionMTS_143.gif

Spikey Created with Wolfram Mathematica 8.0