Arnold’s Cat Map.

The discrete map acting on a two-dimensional lattice {x, y} where x and y are restricted to the integer values 0, 1, ..., c-1.
Its solution introduces Fibonacci integers.

arnoldpoincare_1.gif

arnoldpoincare_2.gif

arnoldpoincare_3.gif

arnoldpoincare_4.gif

arnoldpoincare_5.gif

arnoldpoincare_6.gif

arnoldpoincare_7.gif

arnoldpoincare_8.gif

arnoldpoincare_9.gif

arnoldpoincare_10.gif

It should be clear that these three expressions are equivalent the latter because of the following identity :

arnoldpoincare_11.gif

arnoldpoincare_12.gif

arnoldpoincare_13.gif

arnoldpoincare_14.gif

Periodic solutions of the continuous map (period N) :

arnoldpoincare_15.gif

arnoldpoincare_16.gif

arnoldpoincare_17.gif

arnoldpoincare_18.gif

arnoldpoincare_19.gif

arnoldpoincare_20.gif

arnoldpoincare_21.gif

arnoldpoincare_22.gif

The discrete map acting on a two-dimensional lattice {x, y} where x and y are restricted to the integer values 0, 1, ..., c-1.
Its solution introduces Fibonacci integers.

arnoldpoincare_23.gif

arnoldpoincare_24.gif

arnoldpoincare_25.gif

arnoldpoincare_26.gif

arnoldpoincare_27.gif

arnoldpoincare_28.gif

arnoldpoincare_29.gif

arnoldpoincare_30.gif

arnoldpoincare_31.gif

arnoldpoincare_32.gif

arnoldpoincare_33.gif

arnoldpoincare_34.gif

arnoldpoincare_35.gif

Prediction of the period as a function of c :

arnoldpoincare_36.gif

arnoldpoincare_37.gif

arnoldpoincare_38.gif

arnoldpoincare_39.gif

Spikey Created with Wolfram Mathematica 8.0