Motion of a puck on the frictionless surface of a paraboloïd.

Here is the surface, z = p( billebol_1.gif), (we have set, p=1) :

billebol_2.gif

billebol_3.gif

Initial conditions for the puck : x[0]=0, x’[0]=-vx0, y[0]=y0, y’[0]=0, z[0]=billebol_4.gif, z’[0]=0. Its motion results from the conjugated action of gravity (g) and of the contact with the surface. Friction is absent.

billebol_5.gif

billebol_6.gif

A typical trajectory :

billebol_7.gif

billebol_8.gif

billebol_9.gif

billebol_10.gif

billebol_11.gif

By suitably adjusting the initial conditions you can obtain a stable circular trajectory : Take  billebol_12.gif+billebol_13.gif =2g z[0].

billebol_14.gif

billebol_15.gif

billebol_16.gif

billebol_17.gif

billebol_18.gif

What if gravity is absent ? The only force is the upward action due to the contact with the surface : the puck “rises” spiraling in the direction of positive z !

billebol_19.gif

billebol_20.gif

billebol_21.gif

billebol_22.gif

billebol_23.gif

Comment : in all cases, the puck minimizes the constraint (Gauss principle).  If gravity is absent this is equivalent to saying that the puck looks for the least curvature or equivalently it follows a geodesic.  If tangential friction is taken into account (f=k N), the minimim constraint principle remains valid so that dissipation is also minimized.  This is a special example of the so-called Minimum entropy principle.

billebol_24.gif

Addendum : Newton equations of motion.
When a particle is forced to stay on the surface, z= f(x,y), and is acted upon by a force F=(
billebol_25.gif, billebol_26.gif, billebol_27.gif), the equations of motion are :
billebol_28.gif-mx’’+(billebol_29.gif-m z’’)billebol_30.gif=0  and  billebol_31.gif-my’’+(billebol_32.gif-m z’’)billebol_33.gif=0
Verify that the (square of the) constraint,
billebol_34.gif
Remember that :

billebol_35.gif

billebol_36.gif

billebol_37.gif

billebol_38.gif

billebol_39.gif

Spikey Created with Wolfram Mathematica 8.0